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An axiomatic characterization of an information-theoretic quantity asso- 
ciated with a pair of probability distributions having the same number of 
elements has been given. This quantity, under additional suitable conditions, 
leads to Kullback's information and Kerridge's inaccuracy concepts. 
By modifying one of the axioms, the two-parameter generalization of these 
is obtained. 
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stat ist ical es t imat ion ; parametr ic  general izat ion.  

1, I N T R O D U C T I O N  

Let  Dn denote  the set o f P  ~, w h e r e P "  = (Pl  .... , Pn),P~ i> 0, ~ = 1 P i  ~< 1, is an 
n -p robab i l i ty  vector. Also  let a subset  /)~ o f  D n conta in  only those p n  for 
which ~p= 1 Pi = 1. Fur ther ,  we shall  denote  by An = / ~  x D ~ the set of  all 
ordered  pairs  (P~;  Qn), p~ e / 3  ~ and Qn ~ D ~. 

There  are two in fo rmat ion- theore t i c  measures  associa ted with a pa i r  o f  
n -p robab i l i ty  vectors which are o f  grea t  significance in stat ist ical  es t imat ion  
and  physics. One is the measure  o f  in fo rmat ion  known as Ku l lback ' s  in forma-  
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tion or directed divergence (2,6-8,~~ and is given by 

~I,~(P~; Q") = ~ p, log(p,/q,) (1) 
i = 1  

and the other is Kerridge's inaccurary (7-9) given by 

2In(P '~; Q'~) = - ~ p, log q~ (2) 
t = 1  

Both these include Shannon's entropy as a particular case. 
The object of  this paper is to give an axiomatic characterization of a 

measure which jointly contains (1) and (2). Also, by taking further conditions, 
and these are essentially those which make them basically different from 
Shannon's entropy, we obtain these two measures separately. A suitable 
modification in one of the axioms which specifies the branching property of  
the measures has been used to study two-parameter generalizations of (1) and 
(2). 

In what follows we shall assume that 0 log 0 = 0 log(0/0) = 0 and all 
logarithms are considered to the base 2. 

2. A X I O M S  FOR I N F O R M A T I O N  M E A S U R E S  

We consider a mapping I ,  of  A, into set of  real numbers, i.e., 

I , :  A, -+ R (reals) 

Our aim is to make the function I~ a measure of  information for a pair 
of  n-probability vectors. We assume the following axioms: 

Axiom 1. (Symmetry)': Ir Q4) is symmetric for any permutation of 
elements in p4 followed by the same permutation in Q*. 

Axiom 2. (Branching property): 

I , (P"; Q") - I , -1 (p l  + p2 ,p3 , . . . . p , ;q l  + q2,q3 .... ,q , )  

--- ~(P~, P2; ql,  qz), n = 3, 4 .... 

Axiom 3. (Additivity): 

I2,(P ~ �9 R2; Q" . S 2) = I ,(P"; Q") + 12(R2; S 2) 

where R 2 = (r, 1 - r) and P " * R  2 = (plr, pl(1 - r) ..... p ,r ,p , (1  - r)), 
f o r n  = 2,3. 

I t  is clear from Axiom 1 that the symmetry requirement is very limited 
as taken for n = 4; this is also the case with additivity, in Axiom 3, where we 
use only 12; the branching property is a natural adaptation of one taken by 
Faddeev (see Ref. 3) for characterizing Shannon's entropy. 
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Now we will give as lemmas some results based on the above axioms. 

Lemma 1. The function I ,  satisfying Axioms 1-3 is symmetric for  every 

P roo f  of  this lemma follows exactly on the "lines of  For te  and Daroczy.  (~ 
Lemma 2. I f  I ,  verifies Axioms 1-3 and we define 

~r,s(p; q) = ~(pr ,  p(1 - r ) ;  qs, q(1 - s)) (3) 

then for each r, s ~ [0, 1], ~r,s satisfies Cauchy's  functional  equation,  

~br,s(Pl + _P2; ql + q2) = ~r.s(P~; ql) + ~r,~(P2; q2) (4) 

w h e r e p l , p 2 , q l , q 2  >/ 0 ;p~ + p 2  ~< 1 ;q l  + q 2  ~ 1. 

Proof .  From  Lemma 1 and Axiom 2, we get 

I2~(P ~ �9 R~; Q ~ ,  s 2) 

= I~(P";  O") + ~ q~(p~r,p~(1 - r);  q~s, q~(1 - s)) (5) 

On the other hand, f rom Axiom 3 for  n = 2 and 3, we have 

I2~(P" * R2; Q~ * S 2) = I~(P";  Q~) + Iz(R2; S 2) (6) 

Compar ing  (5) and (6), we obtain for n = 2 and 3, 

~ .  (~(pr - r); q~s,q,(1 - s)) = I2(R2; S 2) (7) 
i = l  

In particular for  n ~ 3 ,  i.e., for  (pa;  Q3) ~A3, 

(~(plr, p l (1  - r); qls,  q~(1 - s)) 

+ O(p2r, p2(1 - r); q2s, q2(1 - s)) 

+ c~(p3r, p3(1 - r); q3s, q3(1 - s)) = I2(R2; S 2) (8) 

and also replacing the distribution (Pz ,  f12, Pa) by (p~ + P2, P3) and (q~, q2, q3) 
by (ql + q2, qa), we have 

<)((p~ + p2)r, (p~ + p2)(1 - r); (q~ + q~)s, (q~ + q2)(1 - s)) 

+ <)(p3r, p3(1 - r);  q3s, q3(1 - s)) = I2(R~; S 2) (9) 

Subtracting (9) f rom (8), we have 

q~((p~ + p2)r, (p~ + p2)(1 - r); (q~ + q2)s,(q~ + q2)(1 - s)) 

= <)(pzr, p~(1 - r); q~s,q~(1 - s)) 

+ <)(p2r, p2(1 - r);  p~s, p=(1 - s)) 

which gives (4). Q.E.D. 
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Lemma 3. Let the function ~b as given in Axiom 2 be (i) bounded and 

(ii) ~br,,(0; q) = 0 for q e [0, 1] (10) 

then 

~(Pl,  P~ ; ql,  q2) 

( P l  , P2 . ql , q2 ) (11) 
= (Pl  +P2) I2  P l  + P2 Pl  + P2'  ql + q2 ql + q2 

where I~ satisfies Axioms 1-3. 

Proof .  Putting Pl -- 0 in (4) and using (10), we have 

~br,s(p2; q2) = ~b~,~(p2; ql + q2) (12) 

forp2 ~ [0, 1], 0 ~< q2, qz + q2 ~< 1. 
Thus we may say that  ~br,s(p; q) is independent of q. So we write 

~b~,s(p2; q) = br,~(p2) for P2 ~ [0, 1] (13) 

Equation (4) then becomes 

br,s(pl) + br,~(p2) = br,~(p~ + P2) (14) 

for Pl ,  P2 E [0, I] with Pl + P2 ~< 1. 
Since the function Sr,,(p; q) is bounded, so is b~,,(p); therefore the solu- 

tion of the Cauchy's  functional equation (14) is given by 

b~,s(p) = pb~,s(1) (15) 

But from (12), (13), and (15) (see Kannappan  (s)) we find that  

~b~,~(p; q) = p~b~,s(1 ; 1), p ~ [0, 1], q ~ [0, 1] 

In addition, the definition of ~b~,s(p; q) implies 

~(pr ,  p(1 - r); qs, q(1 - s)) = p(~(r, 1 - r; s, 1 - s) (16) 

p, q e [0, 1]. Thus from (7) we get 

I2(R2; S 2) = (~(r, 1 - r; s, 1 - s) (17) 

Now set t ingpl  = pr,  p2 = p(1 - r), q~ = qs, and q2 = q(1 - s) in (16) 
and using (17), we have Eq. (11), which proves the lemma. Q.E.D. 

As a matter of  consequence, Axiom 2 reduces precisely to 

I~(P";  Q") - I~_~(p~ + p 2 , p 3  ..... p , ; q ~  + q2,q3 .... , q , )  

( pl , P2 . ql , q2 ) (18) 
= (p~ + p 2 ) I 2  P~ + p 2  P~ + P 2 ' q ~  ~ q 2  q~ + q 2  

which is now the form of the branching property. 
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Lemma 4. If v~ ~> 0, k = 1 ,2 , . . . ,m,  ~ = ~ v k  = p ~  > 0, and h~ > 0, 
k = 1, 2,..., m, ~ =  z h~ = q~ > 0 for  every i = 1, 2,..., n, then 

Im + n -  ~ (p~ ,... ,  p~ - ~ , V~ ,... ,  Vm , pi  + ~ .... , p~ ; q~ ,... ,  q~ _ z , h~ ,... ,  hm , q~ + ~ .... , q , )  

P~ qi 

P r o o f  For  m = 2 this reduces to (18). The  l emma will be proved  by 
induction.  

Applying  (19) for  m in Im+, ,  

I m + , ( p l  .... , p~ -~ ,  VZ ..... Vm+ z,p~+ ~ .... , p , ;  qz , . . . ,  q~_ x, hz .... , hr~+ ~, q~+ ~ .... , q , )  

= I , + ~ ( p ~ , . . . , p ~ _ ~ ,  v~ , f i ,  p~+z , . . . ,p~;  qz , . . . ,  q~_~, h~,~l, q~+~ .... , q , )  

4- p Im p q 

= I , ( P ~ ;  Q")  + p~ 2~p~ p ,  q~" 

+ Im(Vp .... , Vm+l"fi ' qhj .... , h " q ~ )  (21) 

( p  = v2 4-...-4- Vm+ l,  ~t = h2 + ' " 4 -  hm+ ~) reducing I,+~ t o I .  and I2 by (18). 
But for  n = 2 and m = m, (19) is 

/m+ 1(~. ..... Um'~l"h'-~l,'",hm+l)pi , P ,  --p~ 

p-? q-7 

+ , - -  
\p~j \ /5 

vm+ 1. h___2,..., hm+_._._._!l' ~ 
(22) / 

Using (21) in (20), the result o f  the l emma follows for m + 1. Q.E.D.  

Lemma 5. If vis ~> 0, j =  1 ,2 , . . . ,m~,~p~lv~j  = p ~  > 0, and h~j > 0, 
j =  1 ,2 , . . . ,m~,~p~lh~j  ~< 1, i :  1 , 2 , . , n ,  ~ = l p ~  = 1, ~ = l q ~  ~< 1, then 

t.m.(v-~.; H.m.) 

= I , ( P ' ;  Qn) + p~lr~, P,  q~ q, / 
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This follows simply from the above lemmas (refer to Havrda and Char- 
vat(5)). 

Next if in Lemma 5 we replace mi by m, v~j = 1/rnn, h~j = 1/rs, q~ = l/s, 
i = 1, 2 ..... n, j = 1, 2,..., m, where m, n, r, anal s are positive integers such 
that  1 ~< m ~< r, 1 ~< n ~< s, then we obtain 

F(mn; rs) = F(m; r) + F(r; s) (24) 

where 

f (rn;  r) = I(1/m,..., l /m; l/r,..., I/r) (25) 

We now state without proof  the standard result (see Aczel, (1) Chapter 5). 

Lemma 6. The most general bounded solution of the Cauchy's func- 
tional equation in two variables given by (24) is 

F(m; r) = A' log m + B' log r (26) 

where A' and B' are arbitrary constants. 

Thus we can say that Lemmas 1-6 are consequences of axioms 1-3. 
We now come to the central theorem of this paper. 

Theorem 1. Axioms 1-3 together with the continuity of In in the region 
2x n determine the function In as 

i~(pn; Qn) = A ~ p, log p, + B 2 P~ log q, (27) 
i=l ~=i 

where A and B are arbitrary constants. 

Proof. I f  m, r~, and h are positive integers such that ~?= 1 r~ = m and 
~ =  z h = m and if we put p~ = r~/m, q~ = h/r, i = 1, 2,..., n, then an applica- 
tion of Lemma 5 gives 

I(1/m,..., 1/m; 1/r,..., 1/r) 

= in(pn; Qn) + ~ p~I(1/r~,..., lira; l/t~,..., l/h) (28) 
i = 1  

O r  

F(m; r) = In(Pn ; Qn) + ~ piF(r~ ; h) (29) 

Thus (29) together with (26) and (28) gives Eq. (27), where A = - A '  
and B = - B '  are arbitrary constants and then continuity of In proves the 
result for reals. Q.E.D. 
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3. A P P L I C A T I O N S  TO I N F O R M A T I O N  T H E O R Y  

As remarked earlier, Kullback's information (or directed divergence) and 
Kerridge's inaccuracy are two information-theoretic measures associated 
with a pair of distributions and their characterizations are given below. 

Theorem 2. (Kullback's information): 
A, -+ R (reals) under Axioms 1-3 and with 

I2(P2; e 2) = O, 

and 

is given by 

I~(1, 0; �89 �89 = 1 

The continuous mapping I , :  

p ~ (0, 1) (30) 

(3t) 

~I~(P~; Q~) = ~ p~ log (pJq,) (32) 
i = 1  

Proof. Equation (27) with (30) gives A + B = 0 and then (31) gives 
A = 1. Thus (27) becomes (32), which is Kullback's information. Q.E.D. 

Theorem 3. (Kerridge's inaccuracy): The continuous 
A~ = R (reals) under Axioms 1-3 and with 

I3(p~, P2, P3; q~, q2, qa) = I2(p~, P2 + P3; q~, q2) 
and 

I~(�89 �89189 0 = 1 

j . ( e . ;  Q~) = - ~ p, log q, 
/ = 1  

mapping I~: 

(33) 

(34) 

(35) 

is given by 

Proof. Here Eq. (27) with (33) gives A = 0 and then (34) gives B = - 1. 
Thus (27) reduces to (35), which is Kerridge's inaccuracy. Q.E.D. 

Note. Condition (33) is Axiom 4 taken by Kerridge ~9) and, as emphasized 
by Kerridge, is the most important additional axiom for characterizing 
inaccuracy. 

4. GENERALIZED M E A S U R E  OF TYPE (%fl) 
Now let the mapping I~ denoted by In(~'B) depend on two parameters c~ and 

fl, and in place of Axiom 2 [form (18)], we have the branching property of 
type (a, fl) given by i 

Axiom 2'. (Generalized branching property): 

In(~,B)[ ~ + 1 \ / I 1  , . . . ,  P i  - 1 ~ [)(1 , Vi2  ' P ~  + 1 , . "  ~ P n ,  

ql .... , q~-l, h~, h~, q~+l ..... q,~) 

~ a  BT [ V i l ~  Vi...~ 2 �9 _ _  
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for every vq + v~ =p~ > 0, h~ + h~ =q~ > 0, i =  1,2,...,n, where 
and/3 are arbitrary parameters such that a r 1,/3 va 0. 

It can be seen that Axiom 2' reduces to (18) for ~ = 1,/3 = 0. 
This generalized branching property now gives measures whose charac- 

terization is given in the next theorem. 

Theorem 4. Axioms 1, 2', and 3 together with continuity of I~ "'~) in the 
region 2x~ determine the function I (~,~) as 

I(d,B)(P~; Q~) = C(a, fl)[ ~= p~q~B ~ 1 ,  / 3 ~ 0  (36) 

where C(a,/3) (~- 0) is a constant depending upon the parameters ~ and/3. 

Proof. With the help of Axiom 2', Lemma 5 takes the form 

I(~,~)( v~m,. H~m,) 
urea \ - -  

= I~'~)(P~; Q~) + ~= ~e~ ~ ~m, ~-~',,," P~ ," q~ .,,,. (37) 

Now setting the substitution given in (23) in (37), we obtain 

f(~.B)(mn; rs) -= F(~'e)(n; s) + (1/n)~-l(1/s)BF(~'B)(m; r) (38) 

where F(~'~)(m; r) = I(~'~)(1/m ..... 1/m; t I r ..... 1/r). 
Because of the symmetry of I~ ~'~, (38) can be written as 

F(~.~)(mn; rs) = f(~'e)(m; r) + (1/m)~-l(1/r)Bf(~'B)(n; s) (39) 

Equations (38) and (39) give 

F("'a)(m; r) = C(% fl)[(1/m) "-l(1/r)~ - 11 (40) 

where C(a,/3) (r  is a constant depending upon the parameters a and/3. 
Again setting (28) in (37), we obtain 

l(~,e)(1/m,..., 1/m; l/r,..., 1/r) 

= I~(~,~)(P~; Q~) + ~ pi~q~I(~,~)(1/r~,..., 1/r~; I/G..., l/h) 
i = 1  

i.e., 

I~,B)(p~; QD = F(r r) - ~ t,i-r �9 ~ t," h) 

Now (41) together with (40) gives (36). Q.E.D. 

(41) 
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Earlier Sharma and Ram Autar ~12'1a~ have studied a quantity 

i~(p~;Qn) = ( 2 e - ~ _  1)-1[~.~=1 ~ p e q ~ - B -  1], c ~  I, [3~ 1 

which arises from the study of generalized functional equation. 
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4.1.  Par t i cu lar  C a s e s  

Case I. Expression (36) together with (30) and (31) gives 

II~(P~; Q'~) = (2 ~-1 - I) -1 p~q?-~  - 1 , a r 1 (42) 
. =  

Quantity (42) was earlier studied by Rathie and Kannappan (lz) and 
reduces to Kullback's information (32) in the limiting case c~-+ 1. 

Case II. Expression (36) together with (33) and (34) gives 

~iB(p~; Q~) = (2-~ _ 1)-~H= ~ p,qe _ 1 , [3 # 0 (43) 

Expression (43) reduces to (35) when [3-+ 0, which is Kerridge's in- 
accuracy. 

Some interesting properties of expression (36) will be studied elsewhere. 
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